logo

Review Journal: The Effect of Heterogeneous Zeolite Catalyst and Modified Zeolite Catalysts on Biogaseline Yields

DOI:

https://doi.org/10.71131/1tqsre11

Abstract

Increased fuel consumption of oil has an impact on the energy crisis. Biogasolin is an alternative fuel from vegetable oil that has the potential to overcome this problem. One of the methods used to produce biogasoline is the catalytic string method. Such methods generally use a catalyst to help speed up reactions. The use of catalysts in the cracking process is increasingly diverse. In this review article will compare the biogasoline percent value between several types of catalysts focused on zeolite and zeolite catalysts that are modified with metal, including the general picture of the arrest of the material, type and characteristics of the zeolite catalyst, operating conditions, and ways of performance of each catalyst. Zeolite catalyst which is a heterogeneous catalyst is considered to have good ability in selectivity, activity, and ease of modification so that it is very influential on the cracking results. Some zeolite catalysts modified with metals such as nimo/zeolite; Zn/HZSM-5; Cu/HZSM-5; Ni/HZSM-5; MO/HZSM-5; HZSM-5; PD/HZSM-5; PT/HZSM-5; Zn/Na-ZSM-5; Ni/ZSM-5; Ni/mnz; Co-NI/HZSM-5 and each biogasoline is obtained at 11.93%; 28.38%; 17.55%; 32-37%; 9-23%; 30.2%; 32-41%; 11.73% are reportedly able to provide performance to improve biogasoline results and certainly become a new catalyst that is useful in the scientific world

Keywords:

Heterogeneous catalyst , Biogasoline , Zeolite

Downloads

Download data is not yet available.

References

Santoso, A., Putri, D. E. K., Rusdi, M., Sumari-Sumari, S. S., Wijaya, A. R., & Rachman, I. B. (2021, March). The effect of basic catalyst concentration on tobacco oil transesterification (Voor-Oogst) using ultra-sonic wave and its potential as renewable energy. In AIP Conference Proceedings (Vol. 2330, No. 1). AIP Publishing.

X. Wang et al., “Vegetable oil-based nanofluid minimum quantity lubrication turning: Academic review and perspectives,” J. Manuf. Process., vol. 59, pp. 76–97, Nov. 2020, doi: 10.1016/j.jmapro.2020.09.044.

H. K. Jeswani, A. Chilvers, and A. Azapagic, “Environmental sustainability of biofuels: a review,” Proc. R. Soc. Math. Phys. Eng. Sci., vol. 476, no. 2243, p. 20200351, Nov. 2020, doi: 10.1098/rspa.2020.0351.

H. K. Gurdeep Singh et al., “Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts,” Environ. Res., vol. 186, p. 109616, Jul. 2020, doi: 10.1016/j.envres.2020.109616.

N. Le-Phuc et al., “High-efficient production of biofuels using spent fluid catalytic cracking (FCC) catalysts and high acid value waste cooking oils,” Renew. Energy, vol. 168, pp. 57–63, May 2021, doi: 10.1016/j.renene.2020.12.050.

Wargadalam, V. J., Aminuddin, V. N., Syafei, M. H., & Enrico, J. (2023). Kinetic Study of Palm Oil Catalytic Cracking Over A Zeolite-Based Catalyst (Study Kinetika Perengkahan Katalitik Minyak Sawit Pada Katalis Berbasis Zeolite). Jurnal Penelitian Hasil Hutan Vol, 40(2).

Yoshimura, T., Tanaka, S., Matsuda, N., Nakayama, N., Hashimoto, T., & Ishihara, A. (2024). Estimation of catalytic cracking of vacuum gas oil by ZSM-5-and β-zeolite-containing two-layered and novel three-layered hierarchical catalysts using Curie point pyrolyzer. Journal of Analytical and Applied Pyrolysis, 182, 106621.

Inaloo, E. B., & Saidi, M. (2023). Catalytic pyrolysis of olive pomace for biofuel production: Application of metal oxide-modified zeolite catalysts. Biomass and Bioenergy, 177, 106947.

Mohamed, E. A., Betiha, M. A., & Negm, N. A. (2023). Insight into the recent advances in sustainable biodiesel production by catalytic conversion of vegetable oils: current trends, challenges, and prospects. Energy & Fuels, 37(4), 2631-2647..

Carrasco Díaz, A., Abdelouahed, L., Brodu, N., Montes-Jiménez, V., & Taouk, B. (2024). Upgrading of Pyrolysis Bio-Oil by Catalytic Hydrodeoxygenation, a Review Focused on Catalysts, Model Molecules, Deactivation, and Reaction Routes. Molecules, 29(18), 4325..

Rusdi, M., Santoso, A., & Sumari, S. (2022). Sintesis metil ester dari minyak biji tembakau (Voor-Oogst) dengan Katalis Koh menggunakan gelombang ultrasonik. Jurnal MIPA dan Pembelajarannya (JMIPAP), 2(6)..

S. Thongkumkoon, W. Kiatkittipong, U. W. Hartley, N. Laosiripojana, and P. Daorattanachai, “Catalytic activity of trimetallic sulfided Re-Ni-Mo/γ-Al2O3 toward deoxygenation of palm feedstocks,” Renew. Energy, vol. 140, pp. 111–123, Sep. 2019, doi: 10.1016/j.renene.2019.03.039.

R. G. Kukushkin et al., “Deoxygenation of esters over sulfur-free Ni–W/Al2O3 catalysts for production of biofuel components,” Chem. Eng. J., vol. 396, p. 125202, Sep. 2020, doi: 10.1016/j.cej.2020.125202.

Wahyuni, S., Taufiq, A., Sumari, S., Rusdi, M., Subadra, S. T., & Setyawan, T. E. (2024, June). Studies on efficient removal Cu (II) using magnetite/titania/ZAA nanocomposite. In AIP Conference Proceedings (Vol. 3074, No. 1). AIP Publishing.

Rivoira, L. P., Ledesma, B. C., Fraire, M. V., Valles, V. A., Costa, M. B. G., & Beltramone, A. R. (2024). Biomass waste as a raw material for the mesoporous catalyst synthesis and its application in HDO of guaiacol for biofuel production.

S. Thongkumkoon, W. Kiatkittipong, U. W. Hartley, N. Laosiripojana, and P. Daorattanachai, “Catalytic activity of trimetallic sulfided Re-Ni-Mo/γ-Al2O3 toward deoxygenation of palm feedstocks,” Renew. Energy, vol. 140, pp. 111–123, Sep. 2019, doi: 10.1016/j.renene.2019.03.039.

L. S. Herculano et al., “The correlation of physicochemical properties of edible vegetable oils by chemometric analysis of spectroscopic data,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 245, p. 118877, Jan. 2021, doi: 10.1016/j.saa.2020.118877.

Zhang, M., Han, X., Wang, H., Zeng, Y., & Xu, C. C. (2023). Hydrodeoxygenation of Pyrolysis Oil in Supercritical Ethanol with Formic Acid as an In Situ Hydrogen Source over NiMoW Catalysts Supported on Different Materials. Sustainability, 15(10), 7768.

A. Ramesh, P. Tamizhdurai, P. Santhana Krishnan, V. Kumar Ponnusamy, S. Sakthinathan, and K. Shanthi, “Catalytic transformation of non-edible oils to biofuels through hydrodeoxygenation using Mo-Ni/mesoporous alumina-silica catalysts,” Fuel, vol. 262, p. 116494, Feb. 2020, doi: 10.1016/j.fuel.2019.116494.

Ifa, N. N. S. Y. L., & Arief, T. Catalytic Cracking Of Palm Oil Via HZSM-5 Synthesis And Metal Impregnation. Zeolites, 440, 12.

Zulfa, L. L., Safrida, N., Ardhyananta, H., Triwicaksono, S., Kurniawansyah, F., Anityasari, M., ... & Raihan, J. N. (2024). Catalytic cracking of crude palm oil into biogasoline over HZSM-5 and USY-Zeolite catalysts: A comparative study. South African Journal of Chemical Engineering, 50, 27-38..

Azis, Z., Susanto, B. H., & Nasikin, M. (2021, May). Production of high-octane gasoline by catalytic cracking of petroleum gasoil with palm’s triglyceride and oleic acid. In IOP Conference Series: Earth and Environmental Science (Vol. 749, No. 1, p. 012010). IOP Publishing.

Ruangudomsakul, M., Osakoo, N., Keawkumay, C., Kongmanklang, C., Butburee, T., Kiatphuengporn, S., & Khemthong, P. (2021). Influential properties of activated carbon on dispersion of nickel phosphides and catalytic performance in hydrodeoxygenation of palm oil. Catalysis Today, 367, 153-164.

Li, X., Lin, M., Li, R., Lu, Q., Yang, M., & Wu, Y. (2023). Preparation of Metal-Acid bifunctional catalyst Ni/ZSM-22 for palmitic acid catalytic deoxygenation. Fuel, 332, 126139.

Ochoa, E., Torres, D., Pinilla, J. L., & Suelves, I. (2021). On the hydrothermal-enhanced synthesis of highly selective Mo2C catalysts to fully deoxygenated products in the guaiacol HDO reaction. Journal of Environmental Chemical Engineering, 9(2), 105146.

H. K. Gurdeep Singh et al., “Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts,” Environ. Res., vol. 186, p. 109616, Jul. 2020, doi: 10.1016/j.envres.2020.109616.

K. Wijaya et al., “Synthesis of nickel catalyst supported on ZrO2/SO4 pillared bentonite and its application for conversion of coconut oil into gasoline via hydrocracking process,” J. Environ. Chem. Eng., vol. 9, no. 4, p. 105399, Aug. 2021, doi: 10.1016/j.jece.2021.105399.

Ramesh, A., Tamizhdurai, P., Krishnan, P. S., Ponnusamy, V. K., Sakthinathan, S., & Shanthi, K. (2020). Catalytic transformation of non-edible oils to biofuels through hydrodeoxygenation using Mo-Ni/mesoporous alumina-silica catalysts. Fuel, 262, 116494.

Ramesh, A., Tamizhdurai, P., Krishnan, P. S., Ponnusamy, V. K., Sakthinathan, S., & Shanthi, K. (2020). Catalytic transformation of non-edible oils to biofuels through hydrodeoxygenation using Mo-Ni/mesoporous alumina-silica catalysts. Fuel, 262, 116494.

Singh, H. K. G., Yusup, S., Quitain, A. T., Abdullah, B., Ameen, M., Sasaki, M., & Cheah, K. W. (2020). Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts. Environmental research, 186, 109616.

Rafiani, A., Culsum, N. T., & Kadja, G. T. (2024). State-of-the-art and the future directions of glycerol transformation to bio-based aromatics via catalytic pyrolysis over zeolite catalysts. Bioresource Technology Reports, 101785.

Kongparakul, S., Ding, M., Guan, G., Chanlek, N., Reubroycharoen, P., Vo, D. V. N., & Samart, C. (2023). High-efficiency catalytic pyrolysis of palm kernel shells over Ni2P/nitrogen-doped activated carbon catalysts. Biomass and Bioenergy, 174, 106836.

N. Salahudeen et al., “Synthesis of RE Y zeolite for formulation of FCC catalyst and the catalytic performance in cracking of n-hexadecane,” Res. Chem. Intermed., vol. 43, no. 1, pp. 467–479, Jan. 2017, doi: 10.1007/s11164-016-2635-3.

F. P. Sousa, L. N. Silva, D. B. de Rezende, L. C. A. de Oliveira, and V. M. D. Pasa, “Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel,” Fuel, vol. 223, pp. 149–156, Jul. 2018, doi: 10.1016/j.fuel.2018.03.020.

Published

2024-12-27

How to Cite

Rahmawati, S. ., Wahyuni, S., Rusdi, M. ., Priyanti, N. A. ., Nisa, L. C. ., Muttaqin, M. Z. ., & Fatimah, S. (2024). Review Journal: The Effect of Heterogeneous Zeolite Catalyst and Modified Zeolite Catalysts on Biogaseline Yields. International Journal of Sustainable English Language, Education, and Science, 1(2), 49-56. https://doi.org/10.71131/1tqsre11