logo

Active Sites Determination of Enzyme 1-aminocyclopropane-1-carboxylic acid synthase 2 (ACS2) of Capsicum chinense using Modeling and In Silico Docking

DOI:

https://doi.org/10.71131/d1yzr175

Abstract

The growth of Chili pepper (Capsicum chinense Jacquin.) is affected by biotic and abiotic stresses. Abiotic stress such as waterlogging increases the expression of ACS (1-aminocyclopropane-1-carboxylic acid synthase) enzyme. This enzyme plays a great role in the process of ethylene biosynthesis and encoded by multiple genes. Waterlogging causes hypoxia condition. One of ACS enzymes that responds to hypoxia condition is ACS2. The different respond to hypoxia stress among plant was assumed to be caused by a different structure of the ACS2 enzyme. This study aimed to identify and confirm the active site of Capsicum chinense Jacquin ACS2  using modeling and in silico docking. The result of the three-dimensional (3D) structure modeling showed 91% similarity of Capsicum chinense Jacquin ACS2 with the structure of the tomato (Solanum lycopersicum L.). The Capsicum chinense ACS2 confirmed five active sites that bind to the substrates asparagin396B, valine397B, thyrosine152B, threonine128B, and thyrosine92A. 

Keywords:

ACS2, Docking, In silico

Downloads

Download data is not yet available.

References

Ahmed, A., Kazemi, S., and Gohlke, H. (2007). Protein flexibility and mobility in structure-based drug design. In Frontiers in Drug Design & Discovery: Structure-Based Drug Design in the 21st Century, (Bentham Science Publishers), pp. 455–476.

Argueso, C.T., Hansen, M., and Kieber, J.J. (2007). Regulation of ethylene biosynthesis. J. Plant Growth Regul. 26, 92–105. https://doi.org/10.1007/s00344-007-0013-5.

Capitani, G., Hohenester, E., Feng, L., Storici, P., Kirsch, J.F., and Jansonius, J.N. (1999). Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J. Mol. Biol. 294, 745–756. https://doi.org/10.1006/jmbi.1999.3255.

Claverie, J., and Notredame, C. (2006). Bioinformatics for Dummies. (Indiana: Wiley Publishing Inc.), p.

Eun, H-D., Ali, S., Jung, H., Kim, K., and Kim, W-C. (2019). Profiling of ACC synthase gene (ACS11) expression in Arabidopsis induced by abiotic stresses. Appl Biol Chem. 62, 42. https://doi.org/10.1186/s13765-019-0450-4

Huai, Q., Xia, Y., Chen, Y., Callahan, B., Li, N., and Ke, H. (2001). Crystal structures of ACC synthase in complex with AVG and PLP provide new insight into catalytic mechanism. J. Biol. Chem. 276, 38210–38216. https://doi.org/10.1074/ jbc.M103840200.

Kuchel Philip, and Ralston, G.B. (2002). Schaum’s Easy Outlines Biochemistry (McGraw-Hill Education).

Khan, M.I.R., Trivellini, A., Chhillar, H., Chopra, P., Ferrante, A., Khan, N.A., and Ismail, A.M. (2020). the significance and functions of ethylene in flooding stress tolerance in plants. Environ. Exp. Bot. 179, 104188. https://doi.org/10.1016/j.envexpbot.2020.104188.

Khan, S., Alvi, A.F., Saify, S., Iqbal, N., and Khan, N.A. (2024). The ethylene biosynthetic enzymes, 1-aminocyclopropane-1-carboxylaste (ACC) synthase (ACS) and ACC oxidase (ACO): The less explored players in abiotic stress tolerance. Biomolecules. 14, 90. https://doi.org/10.3390/biom14010090.

Lincoln Taiz, and Eduardo Zeiger (2002). Plant Physiology (Sunderland: Sinauer Associates).

Lukitaningsih, E., Wisnusaputra, A., and Sudarmanto, B.A. (2015). SCREENING IN SILICO ACTIVE COMPOUND OF Pachyrrhizus erosus AS ANTITIROSINASE ON Aspergillus oryza (COMPUTATIONAL STUDY WITH HOMOLOGY MODELING AND MOLECULAR DOCKING). Tradit. Med. J. 20, 7–15.

Molla, M.R., Rohman, M.M., Islam, M.R., Hasanuzzaman, M. and Hassan, L. (2022). Screeding and evaluation of chilli (Capsicum annuum L.) genotypes for waterlogging tolarance at seedling stage. Biocell. 7, 1613-1627. https://doi.org/10.32604/biocell.2022.019243.

Ou, L.J., Dai, X.Z., Zhang, Z.Q., and Zou, X.X. (2011). Responses of pepper to waterlogging stress. Photosynthetica 49, 339–345. https://doi.org/10.1007/s11099-011-0043-x.

Pace, C.N., Scholtz, J.M., and Grimsley, G.R. (2014). Forces stabilizing proteins. FEBS Letters. 588, 2177-2184. https://doi.org/10.1016/j.febslet.2014.05.006.

Pattyn, J., Vaughan-Hirsch, J., and Van de Poel, B. (2020). The regulation of ethylene biosynthesis: a complex multilevel control circuitry. New Phytologist. 229, 770-782. https://doi.org/10.1111/nph.16873.

Park, C., Lee, H.Y., and Yoon, G.M. (2021). Curr Opin Plant Biol. 63, 102046. https://doi.org/10.1016/j.pbi.2021.102046.

Peng, H.-P., Lin, T.-Y., Wang, N.-N., and Shih, M.-C. (2005). Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol. Biol. 58, 15–25. https://doi.org/10.1007/s11103-005-3573-4.

Roeder, S., Dreschler, K., Wirtz, M., Cristescu, S.M., van Harren, F.J.M., Hell, R. and Piechulla, B. (2009). SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. Plant Mol Biol. 70, 535-546. https//doi.org/10.1007/s11103-009-9490-1.

Sanchez, R., and Šali, A. (1997). Advances in comparative protein-structure modelling. Curr. Opin. Struct. Biol. 7, 206–214. https://doi.org/10.1016/S0959-440X(97)80027-9.

Sharmin, R.A., Karikari, B., Bhuiyan, M.R., Kong, K., Yu, Z., Zhang, C., and Zhao, T. (2024). Comparative morpho-physiological, biochemical, and gene expressional analysis uncover mechanisms of waterlogging tolerance in two soybean introgression lines. Plants. 13, 1011. https://doi.org/10.3390/plants13071011.

Trott, O., and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461. https://doi.org/10.1002/jcc.21334.

Xu, C., Hao, B., Sun, G., Mei, Y., Sun, L., Sun, Y., and Wang N.N. (2021). Dual activities of ACC synthase: Novel clues regarding the molecular evolution of ACS genes. Sci Adv. 7, eabg8752.

Wang, Z., Wei, X., Wang, Y., Sun, M., Zhao, P., Wang, Q., Yang, B., Li, J., and Jiang, Y-Q. (2023). WRKY29 transcription factor regulates ethylene biosynthesis and response in Arabidopsis. Plant Physiol Biochem. 194, 134-145. https://doi.org/10.1016/j.plaphy.2022.11.012.

Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W.F., Harden, L.A., and Theologis, A. (2003). Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278, 49102-49112.

Yip, W.-K., Dong, J.-G., Kenny, J.W., Thompson, G.A., and Yang, S.F. (1990). Characterization and sequencing of the active site of 1-aminocyclopropane-1- carboxylate synthase. Proc. Natl. Acad. Sci. 87, 7930–7934.

Published

2024-12-28

Issue

Section

Articles

How to Cite

Pahlevi, M. R., Widhianata, H., Puspaningsih, E. S. ., Lestari, J. W., Sudibya, E., Suwasono, P. R., & Habiburrahman , N. . (2024). Active Sites Determination of Enzyme 1-aminocyclopropane-1-carboxylic acid synthase 2 (ACS2) of Capsicum chinense using Modeling and In Silico Docking. ⁠International Journal of Sustainable Social Culture, Science Technology, Management, and Law Humanities, 1(2), 76-83. https://doi.org/10.71131/d1yzr175