DEVELOPING A THEORETICAL FRAMEWORK OF DIGITAL TWIN FOR INDUSTRIAL MACHINE FAILURE PREDICTION: A LITERATURE REVIEW
DOI:
https://doi.org/10.71131/81bk4g25Abstract
Digital Twin has become a key approach in supporting predictive maintenance strategies for modern industrial machinery. Although numerous studies implement Digital Twin through numerical modeling and artificial intelligence, theoretical studies that map its conceptual structure, fundamental elements, and failure prediction mechanisms remain limited. This article presents a simple literature review aimed at identifying the core concepts of Digital Twin and developing a theoretical framework that can serve as a foundation for future research in mechanical engineering. Literature from Google Scholar, ScienceDirect, and IEEE Xplore was analyzed to formulate the structural components of a Digital Twin system within industrial machine contexts. The findings show that a Digital Twin is composed of a physical model, virtual model, data connectivity, and an analytics engine, all of which work integratively to detect anomalies and predict failures. The theoretical framework developed in this study is expected to serve as a reference for conceptual research related to machine maintenance and mechanical reliability.
Keywords:
Digital Twin, Failure Prediction, Industrial Machinery, Literature Review, Theoretical FrameworkDownloads
References
Baladraf, Thabed Tholib. 2024. “Potensi Penerapan Teknologi Digital Twin Pada Industri Pertanian Dan Pangan Di Indonesia: Sebuah Tinjauan Literatur.” Jurnal Teknotan 18(1):21.
Fikri, Moh Hilman, Moh Ilham Yasin, Wahyu Sudrajad, Abd Syakur, Laila Nur Azizah, Iman Jauhari, and Gigih Dwi Ananto. 2024. “The Effectiveness of Using Think Aloud Strategy on Students’ Reading Achievement in Narrative Text.” International Journal of Sustainable English Language, Education, and Science 1(1):8–13.
Irwanto, Rachmad, and Arnoldus Jean Cornelis. 2025. “FRAMEWORK PENGGUNAAN KALMAN FILTER DALAM KONSEP DIGITAL TWIN.” Jurnal Kajian Teknik Sipil 10(1):18–27.
Kurniawan, Eko, Oldy Fahlovi, Zeluyvenca Avista, Yudha Witanto, and Reza Ilyasa. 2024. “Peran Digital Twin Dalam Otomatisasi Manufaktur Yang Berkelanjutan.” Prosiding SAINTEK: Sains Dan Teknologi Vol 3(1).
Lizar, Yaslinda, Defa Mal Novizam, Mhd Sufiananda Butar-Butar, and Asriwan Guci. 2023. “Tren Global Penelitian Tentang Digital Twin: Analisis Bibliometrik.” The Indonesian Journal of Computer Science 12(6).
Taryana, Galih Purnama, Murman Dwi Prasetio, Murni Dwi Astuti, Ayudita Oktafiani, and Endang Budiasih. 2023. “Desain Monitoring Sistem Pada Tungku Pembakaran Dengan Pendekatan Multi-Level Digital Twin.” Jurnal Sistem Cerdas 6(1):11–18.
Wang, Haifeng, Hua Wu, Zhongjun He, Liang Huang, and Kenneth Ward Church. 2022. “Progress in Machine Translation.” Engineering 18:143–53.
Wati, Dian Laras, Prima Ranna, and Fuk Jin Oei. 2024. “Perkembangan Integrasi Digital Twin Dan Robotik Di Industri Konstruksi.” JMTS: Jurnal Mitra Teknik Sipil 611–20.
Wibowo, Agus. 2024. “Teori Ekonomi Berbasis Big Data.” Penerbit Yayasan Prima Agus Teknik 1–253.